Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
Answer:
temperature on left side is 1.48 times the temperature on right
Explanation:
GIVEN DATA:
T1 = 525 K
T2 = 275 K
We know that
n and v remain same at both side. so we have
..............1
let final pressure is P and temp
..................2
similarly
.............3
divide 2 equation by 3rd equation
thus, temperature on left side is 1.48 times the temperature on right
Answer:
it creates a gas called carbon dioxide. The gas begins to expand in the bottle and starts to inflate the balloon
Explanation:
Why does this happen? well, The faster-moving particles inside the bottle start to move faster and faster and soon they expand to fill the balloon.
Answer:
a) = 692 N
b) = 932 N
Explanation:
a)
According to newton's second law of motion, acceleration of an object is directly proportional to the net force acting on it. When there is no net force force acting on the body, there is no acceleration. A force is a push or a pull, and the net force ΣF is the total force, or sum of the forces exerted on an object in all directions.
∝ a
= ma
= ma
Given data:
= 800 N
Mass = m = 90 kg
acceleration = a = 1.2 m/s²
= ?
800 - = (90)(1.2)
= 692 N
b)
According to newton's second law of motion,
∝ a
= ma
= ma
Given data:
If we assume the same friction and acceleration between player's feet and ground as calculated in part a
= 692 N
acceleration = a = 1.2 m/s²
We take the equal mass to the total mass of both the players because when the winning player push losing player backward, he exert force on the ground not only due to his mass but also due to the mass of losing player.
Mass = M = m₁ + m₂ = 110 kg + 90 kg
= 200 kg
= ?
- 692 N = (200)(1.2)
= 692 + 240
= 932 N
Answer:
A. 58.8m/s
Explanation:
The acceleration due to gravity is 9.8 m/s², so the velocity after 6 seconds is ...
v = at
v = (9.8 m/s²)(6 s) = 58.8 m/s