NaH(s)+ H2O (l)=>NaOH(aq)+H2(g)
You want to calculate the mass of NaH, I assume. Otherwise, the question isn't clear. It simply says calculate the mass(??)
So, calculate the moles of H2 gas that satisfy the conditions of 982 ml at 28ºC and 765 torr. But you must subtract the vapor pressure of water at 28º to get the actual pressure of the H2 gas. So, the actual conditions are 982 ml (0.982 L) and 301 K and 765-28 = 737 torr.
PV = nRT
n = PV/RT = (737 torr)(0.982 L)/(62.4 L-torr/Kmol)(301 K)
n = 0.0385 moles H2
moles NaH needed = 0.0385 moles H2 x 1 mole NaH/mole H2 = 0.0385 moles NaH required
mass of NaH needed = 0.0385 moles x 24 g/mole = 0.925 g NaH
Brainliest Please :)
0.001 would be the smallest.
Good Luck! :)
Answer:
The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is
Explanation:
Given :
The energy E of the electron in a hydrogen atom can be calculated from the Bohr formula:
= Rydberg energy
n = principal quantum number of the orbital
Energy of 11th orbit =
Energy of 10th orbit =
Energy difference between both the levels will corresponds to the energy of the wavelength of the line which can be calculated by using Planck's equation.
(Planck's' equation)
The wavelength of the line in the emission line spectrum of hydrogen caused by the transition of the electron for the given energy levels is