This causes reverse faults<span>, which are the reverse of </span>normal faults<span>, because in this case, the hanging wall slides upward relative to the footwall. Shear </span>stress<span> is when rock slabs slide past each other horizontally. There is no vertical movement of either the hanging wall or footwall, and we get a strike-slip </span>fault<span>.</span>
Answer:
C - 50,000 * 77 * 3
Explanation:
At the top of the hill the potential energy is E= mgh= (160 kg)(9.81 m s^-2)(30 m)= 47088
hope it helps ,
<u>help me by marking as brainliest....</u>
Answer:
well I done really know ask the others person
I think it is d I hope this help you if not let me know if it is not right
Hi there!
II. Linear momentum of the system is zero.
This is an example of a RECOIL collision. With the Law of Conservation of Momentum, momentum remains constant before and after the collision.
Thus, the total momentum would also be equivalent to zero after the collision.