Answer:
2.72 km
Explanation:
(12.33 km)/ 1 hr * (1 hr)/ 60 min
0.2055 km/ min
distance=rate * time (assuming v is constant,
a=0)
(0.2055 km/ min)*(13.22 min)
2.72 km OR 2716.71 m
When in the melting process particles start to move more freely when in the freezing process particles tend to slow and vibrate in place
Answer:
48.16 %
Explanation:
coefficient of restitution = 0.72
let the incoming speed be = u
let the outgoing speed be = v
kinetic energy = 0.5 x mass x
- incoming kinetic energy = 0.5 x m x
- coefficient of restitution =
0.72 =
v = 0.72u
therefore the outgoing kinetic energy = 0.5 x m x
outgoing kinetic energy = 0.5 x m x
outgoing kinetic energy = 0.5184 (0.5 x m x )
recall that 0.5 x m x is our incoming kinetic energy, therefore
outgoing kinetic energy = 0.5184 x (incoming kinetic energy)
from the above we can see that the outgoing kinetic energy is 51.84 % of the incoming kinetic energy.
The energy lost would be 100 - 51.84 = 48.16 %
Answer:
It takes 77 N
Explanation:
Using Newton's second law of motion, F=ma (Force equals mass times acceleration. Since the mass of the couch is 385 kg and the target acceleration is 0.2 m/s, you simply multiply mass times acceleration (ma) to get the total force, or 77 N.
Answer:
<h2>16,600 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question we have
force = 2000 × 8.3
We have the final answer as
<h3>16,600 N</h3>
Hope this helps you