Answer:
A) g = 9.751 m/s², B) h = 2.573 10⁴ m
Explanation:
The angular velocity of a pendulum is
w = √ g / L
Angular velocity and frequency are related.
w = 2π f
f = 1 / 2π √ g / L
A) with the initial data we can look for the pendulum length
L = 1 /4π² g / f²
L = 1 /4π² 9,800 / 0.3204²
L = 2.4181 m
The length of the pendulum does not change, let's look for the value of g for the new location
g = 4π² f² L
g = 4π² 0.3196² 2.4181
g = 9.75096 m / s²
g = 9.751 m/s²
B) The value of the acceleration of gravity can be found with the law of universal gravitation
F = G m M / ²
And Newton's second law
W = m g
W = F
G m M / ² = mg
g = G M / ²
² = G M / g
Let's calculate
² = 6.67 10⁻¹¹ 5.98 10²⁴ /9.75096
R = √ 4.0905 10¹³ = √ 40.9053 10¹²
R = 6.395726 10⁶ m
The height above sea level is
h = R - [tex]R_{e}[/tex
h = (6.395726 -6.37) 10⁶
h = 0.0257256 106
h = 2.573 10⁴ m
Answer:
Explanation:
First of all, we need to find the pressure exerted on the sphere, which is given by:
where
is the atmospheric pressure
is the water density
is the gravitational acceleration
is the depth
Substituting,
The radius of the sphere is r = d/2= 1.1 m/2= 0.55 m
So the total area of the sphere is
And so, the inward force exerted on it is
Momentum = mass * velocity
I need parts A and B to explain the intuitions.
Don’t still need the answers or are u done and is it on edge