Answer:
The values of x for which the model is 0 ≤ x ≤ 3
Step-by-step explanation:
The given function for the volume of the shipping box is given as follows;
V = 2·x³ - 19·x² + 39·x
The function will make sense when V ≥ 0, which is given as follows
When V = 0, x = 0
Which gives;
0 = 2·x³ - 19·x² + 39·x
0 = 2·x² - 19·x + 39
0 = x² - 9.5·x + 19.5
From an hint obtained by plotting the function, we have;
0 = (x - 3)·(x - 6.5)
We check for the local maximum as follows;
dV/dx = d(2·x³ - 19·x² + 39·x)/dx = 0
6·x² - 38·x + 39 = 0
x² - 19/3·x + 6.5 = 0
x = (19/3 ±√((19/3)² - 4 × 1 × 6.5))/2
∴ x = 1.288, or 5.045
At x = 1.288, we have;
V = 2·1.288³ - 19·1.288² + 39·1.288 ≈ 22.99
V ≈ 22.99 in.³
When x = 5.045, we have;
V = 2·5.045³ - 19·5.045² + 39·5.045≈ -30.023
Therefore;
V > 0 for 0 < x < 3 and V < 0 for 3 < x < 6.5
The values of x for which the model makes sense and V ≥ 0 is 0 ≤ x ≤ 3.
Answer:
√36 = 6
a^2 + b^2 = c^2
6^2 + 6^2 = c^2
36 + 36 = c^2
72 = c^2
√72 = c
2 36
2 18
2 9
3 3
6√2 = c
6√2 = (estimate rounded up, 8.49)
128 ounces in a gallon
The pack is 33.84 ounces in total
gallon for 7=18 cents per ounce
pack for 2.39 is .07 cents per ounce
So the pack is a better deal
8 dogs are still alive because you take away 4 from 12 which equals 8
.
Answer:
15.52 ft
Step-by-step explanation:
the length of the rope can be determined using Pythagoras theorem
The Pythagoras theorem : a² + b² = c²
where a = length
b = base
c = hypotenuse
√15² + 4²
= √225 + 16
=√ 241
= 15.52 ft