Answer:
Grow up man, this is completely based on your curriculum, we would need your book to answer, and this has to be done by you.
Electric potential = work done/charge of electron = 2.18×10⁻¹⁸/1.6×10⁻¹⁹
= 13.625 V
Answer:
The required angle is (90-25)° = 65°
Explanation:
The given motion is an example of projectile motion.
Let 'v' be the initial velocity and '∅' be the angle of projection.
Let 't' be the time taken for complete motion.
Let 'g' be the acceleration due to gravity
Taking components of velocity in horizontal(x) and vertical(y) direction.
= v cos(∅)
= v sin(∅)
We know that for a projectile motion,
t =
Since there is no force acting on the golf ball in horizonal direction.
Total distance(d) covered in horizontal direction is -
d = ×t = vcos(∅)× = .
If the golf ball has to travel the same distance 'd' for same initital velocity v = 23m/s , then the above equation should have 2 solutions of initial angle 'α' and 'β' such that -
α +β = 90° as-
d = = = = .
∴ For the initial angles 'α' or 'β' , total horizontal distance 'd' travelled remains the same.
∴ If α = 25° , then
β = 90-25 = 65°
∴ The required angle is 65°.
Answer:
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation when the ball reaches the highest point of its motion.
Explanation:
When a ball is thrown upward under the free fall action of gravity, it starts to loose its Kinetic Energy as it moves upward. As the ball moves in upward direction, its kinetic energy gradually converts into its potential energy. As a result the speed of the ball starts to decrease as it moves up. Therefore, at the highest point during its motion, the velocity of ball becomes zero and it stops at the highest point for a moment, and then it starts to fall back down, under the influence of gravitational force.
Therefore, the situation in which both the instantaneous velocity and acceleration become zero, is the situation <u>when the ball reaches the highest point of its motion.</u>