Answer: It's hard to say without characterizing the collision. But it will be either A if the collision is totally in-elastic, or B if the collision is totally elastic. It could be anywhere in between for partially elastic collisions.
Explanation:
momentum is conserved, so initial system momentum will be left to right.
The velocity of the center of mass is 50(5) / 550 = 0.4545... m/s
In an elastic collision, the lead ball will move off at twice that speed or 0.91 m/s to the right.
The steel ball will bounce back and move away at 0.91 - 5 = -4.1 m/s . The negative sign indicates the steel ball has reversed course and has negative momentum
In a totally in-elastic collision, both balls would move to the right at 0.45 m/s. The steel ball will still have positive momentum.
Answer:
Explanation:
W = 75 watts
V = 110 volts
Formula
W = V * I
Solution
75 = 110 * I Divide by 110
75 / 110 = I
I = 0.6818 Amperes
Answer:
<em>The total time is: t=451.22 sec</em>
<em>The average speed is: V=34.57 m/s</em>
Explanation:
<u>Average speed</u>
The average speed is calculated by dividing the total distance traveled by an object (x) by the total time it took it to travel that distance (t).
Since the student makes the trip in two parts, we have to calculate the total distance and the total time.
We know the distance to school is 7.8 Km = 7,800 m. The student makes his way home over the same distance, thus the total distance is
x=2*7,800 m=15,600 m
The first trip to school was done at an average speed of v1=32.6 m/s. Knowing the distance and speed, we can calculate the time:
The second trip back home was done at an average speed of v2=36.8 m/s. Let's calculate the second time:
The total time is:
The average speed is:
Answer:
what does the outer part of the disk turn into
Explanation:
4) it gets sucked into the star
When ALL the forces are equal, or in general when <span>forces in the opposite direction are equal
so we can have newton example:
10 newtons X -10 newtons
netforce = 0 newtons</span>