Actual yield over theoretical yield, then multiply by 100
Answer:
0.0014 moles is present in 40cm³ of 0.035M of HCl solution
Explanation:
Molarity = 0.035M
V = 40.0mL
1mL = 1cm³
V = 40cm³
0.035 moles = 1000cm³
X moles is present in 40cm³
X = (40 * 0.035) / 1000
X = 0.0014moles
0.0014 moles is present in 40cm³ of solution
Answer:
The wavelength the student should use is 700 nm.
Explanation:
Attached below you can find the diagram I found for this question elsewhere.
Because the idea is to minimize the interference of the Co⁺²(aq) species, we should <u>choose a wavelength in which its absorbance is minimum</u>.
At 400 nm Co⁺²(aq) shows no absorbance, however neither does Cu⁺²(aq). While at 700 nm Co⁺²(aq) shows no absorbance and Cu⁺²(aq) does.
Answer : The concentration of is,
Explanation :
When we assume this reaction is driven to completion because of the large excess of one ion then we are assuming limiting reagent is and is excess reagent.
First we have to calculate the moles of KSCN.
Moles of KSCN = Moles of = Moles of =
Now we have to calculate the concentration of
Total volume of solution = (6.00 + 5.00 + 14.00) = 25.00 mL = 0.025 L
Thus, the concentration of is,
Answer:
CH3COOH would be more concentrated
Explanation:
The higher the concentration value, the more concentrated it is.
The relationship between concentration, moles and volume is given by the equation;
Concentration = No of moles / Volume
5.0 grams of HCOOH dissolved in 189 mL of water
Number of moles = Mass / Molar mass = 5 / 46.03 = 0.1086 mol
Concentration = 0.1086 / 0.189 = 0.5746 mol/L
1.5 moles of CH3COOH dissolved in twice as much water
Volume = 2 * 189 = 378 ml = 0.378 L
Concentration = 1.5 / 0.378 = 3.9683 mol/L
Comparing both concentration values;
CH3COOH would be more concentrated