When considering similar triangles, we need congruent angles and proportional sides.
Hence
"Angles B and B' are congruent, and angles C and C' are congruent." is sufficient to prove similarity of two triangles.
"Segments AC and A'C' are congruent, and segments BC and B'C' are congruent." does not prove anything because we know nothing about the angles.
"Angle C=C', angle B=B', and segments BC and B'C' are congruent." would prove ABC is congruent to A'B'C' if and only if AB is congruent to A'B' (not just proportional).
"<span>Segment BC=B'C', segment AC=A'C', and angles B and B' are congruent</span>" is not sufficient to prove similarity nor congruence because SSA is not generally sufficient.
To conclude, the first option is sufficient to prove similarity (AAA)
For the square:
32•48= 1536 in ^2
For the triangle: 48•12= 576/2= 288 in^2
1536+288= 1824 in^2
It’s just 9 LOL yeahhhhhhhhhhhhhggg hope it goes well lollll
Answer:
(1,2)
Step-by-step explanation:
we know that
The rule of the transformation is equal to
(x, y) ------> (x + 3, y + 1)
Pre-image -----> Image
(x, y) ------> (4, 3)
so
x+3=4 ----> x=4-3=1
y+1=3 ---> y=3-1=2
therefore
The pre-image is the point (1,2)
Answer:
Step-by-step explanation:
OK, so basically I'm pretty sure that you add all of them together and put it as a fraction over 3 so basically then simplify it into