Hello.
The answer is <span>remains the same.
</span>The total amount of energy stays the same because the 1st Law of Thermodynamics states that energy can neither be created nor destroyed, it can only change forms. <span>So the chemical energy is just being converted into heat and light.
</span>
Have a nice day
Answer:
λ1 = 0.0129m = 1.29cm
λ2 = 0.00923m = 0.92 cm
Explanation:
To find the distance between the first order bright fringe and the central peak, can be calculated by using the following formula:
(1)
m: order of the bright fringe = 1
λ: wavelength of the light = 660 nm, 470 nm
D: distance from the screen = 5.50 m
d: distance between slits = 0.280mm = 0.280 *10^⁻3 m
ym: height of the m-th fringe
You replace the values of the variables in the equation (1) for each wavelength:
For λ = 660 nm = 660*10^-9 m
For λ = 470 nm = 470*10^-9 m
Answer:
If the voltage is increased then the electric field is higher, and electron velocity (average) is proportional to this field. Then you have an increase in speed. And current is total charge passing per time unit, so current is proportional to velocity value of charge (and to voltage in resistors and wire).
Explanation:
The speed of the ball just before impact was v=√(2gh) = 6.26m/s. The acceleration is twice this over the time (twice because the second speed is the same in the other direction, meaning the total change in speed is 2V)
a = 12.52/0.10 = 125.2m/s²
The force is F=ma, so F = 0.5kg·125.2m/s² = 62.6N
The answer is ...
28 km per hour