A. Petrified fossil should be the answer
the coefficient of performance of this heat pump is 8.61.
<h3>What is Heat pump ?</h3>
The air source heat pump converts heat from the ambient air into a low-temperature liquid refrigerant. The pump compresses the liquid to raise its temperature using power. To release the heat it had been holding, it then condenses back into a liquid. Your underfloor heating system or radiators get heat.
coefficient of performance -The usable heating or cooling delivered to work (energy) needed ratio, also known as the coefficient of performance, or COP, of a heat pump, refrigerator, or air conditioning system. Higher efficiency, less energy (power) usage, and thus reduced operational costs are all related to higher COPs.
temperature of cold reservoir = -14.0°C
Tc = [ 273+ (-14.0)]K = 259K
temperature of hot reservoir = 20°C
Th = [ 273+ (20)]K = 293K
therefor, formula for coefficient of performance
Cop = Th/Th-Tc
Cop = 293/34
Cop = 8.61
to learn more about heat pump go to - brainly.com/question/3150928
#SPJ4
Answer:
The number of moles of HCl in the 250 mL volumetric flask is 0.003 moles
Explanation:
Firstly, we solve for the concentration of acid using the formula
CaVa/CbVb = nₐ/nb
where Ca is the concentration of acid
Cb is the concentration of base
Va is the volume of acid
Vb is the volume of base
nₐ is the number of moles of acid (from the equation)
nb is the number of moles of base (from the equation)
Ca × 250/0.09876 × 29.59 = 1/1
Ca = 0.09876 × 29.59/250
Ca = 0.012 M
To determine the number of moles of HCl acid present in the 250 ml volumetric flask, the formula for molarity is used
Molarity = number of moles ÷ volume (in liter or dm³)
Volume needs to be converted to liter; 250 ml ⇒ 0.25 L
Molarity of the acid is 0.012 M
From the formula above, number of moles = molarity × volume (in liter)
number of moles = 0.012 × 0.25
number of moles of acid = 0.003 moles