Based on the weight and the model that is given, it should be noted that W(t) in radians will be W(t) = 0.9cos(2πt/366) + 8.2.
<h3>
How to calculate the radian.</h3>
From the information, W(t) = a cos(bt) + d. Firstly, calculate the phase shift, b. At t= 0, the dog is at maximum weight, so the cosine function is also at a maximum. The cosine function is not shifted, so b = 1.
Then calculate d. The dog's average weight is 8.2 kg, so the mid-line d = 8.2. W(t) = a cos t + 8.2. Then calculate a, the dog's maximum weight is 9.1 kg. The deviation from the average is 9.1 kg - 8.2 kg = 0.9 kg. W(t) = 0.9cost + 8.2
Lastly, calculate t. The period p = 2π/b = 2π/1 = 2π. The conversion factor is 1 da =2π/365 rad. Therefore, the function with t in radians is W(t) = 0.9cos(2πt/365) + 8.2.
Learn more about radians on:
brainly.com/question/12939121
The ratio in simplest form would be 1:2:2.
Hello There!
To find the mean, add up all the numbers and divide according to how many numbers there are. The mean for this set would be <em>"9"</em>
<em></em>
To find the median, place the numbers in value order and find the middle. if there is no middle, add up the two numbers in middle and divide by 2. In this set, the median would be <em>"8.5"</em>
<em></em>
To find the mode or modal value, it is best to put the numbers in order. Then count how many of each number. A number that appears most often is the mode. In this set, there would be no mode.
The range of a set of data is the difference between the highest and lowest values in the set. In this set, the range would be <em>"12"</em>