Answer:
1.332 g.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm.
V is the volume of the gas in L.
n is the no. of moles of the gas in mol.
R is the general gas constant,
T is the temperature of the gas in K.
- At the same T and P and constant V (1.0 L), different gases have the same no. of moles (n):
<em>∴ (n) of CO₂ = (n) of C₂H₆</em>
<em></em>
∵ n = mass/molar mass
<em>∴ (mass/molar mass) of CO₂ = (mass/molar mass) of C₂H₆</em>
mass of CO₂ = 1.95 g, molar mass of CO₂ = 44.01 g/mol.
mass of C₂H₆ = ??? g, molar mass of C₂H₆ = 30.07 g/mol.
<em>∴ mass of C₂H₆ = [(mass/molar mass) of CO₂]*(molar mass) of C₂H₆</em> = [(1.95 g / 44.01 g/mol)] * (30.07 g/mol) =<em> 1.332 g.</em>
<em></em>
The correct one would be volume
Answer:
The volume of cupboard is 2.0043 m³.
Explanation:
Given data:
width of cupboard = 1.31 m
length of cupboard = 0.9 m
height of cupboard = 1.70 m
Volume = ?
Solution:
Volume = length × width × height
Volume = 0.9 m × 1.31 m × 1.70 m
Volume = 2.0043 m³
The volume of cupboard is 2.0043 m³.
Answer: The given statement is true.
Explanation:
It is known that due to increase in temperature ice melts. Therefore, during ice age there is also melting of ice and solid state of water changes into liquid state of water.
Therefore, this water moves from its initial place and changes its position result in the change of land and specific areas.
Thus, we can conclude that the statement during an ice age, land can move and specific areas can be permanently changed is true.