your answer will be B . becasue light can be transformed into heat .
Answer:
The magnitude of the velocity of glider B is 0.2m/s and the direction is the negative direction
Explanation:
Inelastic Collision
Given data
mass of glider A m1= 0.125kg
initial velocity u1=0
final velocity v1= 0.600 m/s
mass of glider B m2= 0.375kg
initial velocity u2=0
final velocity v2=?
We know that the expression for the conservation of momentum is given as
m1u1+m2u2=m1v1+m2v2
since u1=u2=u=0m/s
u(m1+m2)=m1v1+m2v2
substituting we have
0(0.125+0.0375)=0.125*0.6+0.375*v2
0=0.075+0.375v2
0.375v2=-0.075
v2=-0.075/0.375
v2=-0.2m/s
The magnitude of the velocity of glider B is 0.2m/s and the direction is the negative direction
Answer:
Explanation:
KE = ½Iω²
ΚΕ = ½(mL²/3)ω²
ΚΕ = ½(0.63(0.82²)/3)4.2²
ΚΕ = 1.24541928
KE = 1.2 J
Answer:
The coastal zone is not a stable and constant environment, but a dynamic place that can change rapidly in response to natural processes such as seasonal weather patterns. Waves, winds, currents, tides and storms are the major forces on the coast.
Explanation:
Answer:
The phase constant is 7.25 degree
Explanation:
given data
mass = 265 g
frequency = 3.40 Hz
time t = 0 s
x = 6.20 cm
vx = - 35.0 cm/s
solution
as phase constant is express as
y = A cosФ ..............1
here A is amplitude that is = = = 6.25 cm
put value in equation 1
6.20 = 6.25 cosФ
cosФ = 0.992
Ф = 7.25 degree
so the phase constant is 7.25 degree