The material that makes up the medium such as air or water and the temperature.
Answer:
The new period will be reduced by 50%
Explanation:
The period of pendulum is given by;
When the length is decreased by 25%, the new length L₂ is given by;
L₂ = 25/100(L₁)
L₂ = 0.25L₁
Thus, the new period will be reduced by 50%
Explanation:
Solids have closely packed particles and vibrate about a fixed position, they also have a fixed volume.
liquid have close particles but which are able to move with a bit of kinetic energy, for this reason they have no fixed volume but take the volume of the container or vessel
Answer:
P₂ = 138.88 10³ Pa
Explanation:
This is a problem of fluid mechanics, we must use the continuity and Bernoulli equation
Let's start by looking for the top speed
Q = A₁ v₁ = A₂ v₂
We will use index 1 for the lower part and index 2 for the upper part, let's look for the speed in the upper part (v2)
v₂ = A₁ / A₂ v₁
They indicate that A₂ = ½ A₁ and give the speed at the bottom (v₁ = 1.20 m/s)
v₂ = 2 1.20
v₂ = 2.40 m / s
Now let's write the Bernoulli equation
P₁ + ½ ρ v₁² + ρ g y₁ = P2 + ½ ρ v₂² + ρ g y₂
Let's clear the pressure at point 2
P₂ = P₁ + ½ ρ (v₁² - v₂²) + ρ g (y₁-y₂)
we put our reference system at the lowest point
y₁ - y₂ = -20 cm
Let's calculate
P₂ = 143 10³ + ½ 1000 (1.20² - 2.40²) + 1000 9.8 (-0.200)
P₂ = 143 103 - 2,160 103 - 1,960 103
P₂ = 138.88 10³ Pa
Answer:
6844.5 m/s.
Explanation:
To get the speed of the satellite, the centripetal force on it must be enough to change its direction. This therefore means that the centripetal force must be equal to the gravitational force.
Formula for centripetal force is;
F_c = mv²/r
Formula for gravitational force is:
F_g = GmM/r²
Thus;
mv²/r = GmM/r²
m is the mass of the satellite and M is mass of the earth.
Making v the subject, we have;
v = √(GM/r)
We are given;
G = 6.67 × 10^(-11) m/kg²
M = 5.97 × 10^(24) kg
r = 8500 km = 8500000
Thus;
v = √((6.67 × 10^(-11) × (5.97 × 10^(24)) /8500000) = 6844.5 m/s.