Answer:
liver and esophagus.
Explanation:
Kidneys are part of the endocrine system, trachea and bronchi are part of the respiratory system
The answer is : C. reduce their input force
they put wax on their kayak to make their boat cut smoothly through the water, which make it able to obtain further distance with less input force, which will increase it's overall speed
Answer:
Complete ionic: .
Net ionic: .
Explanation:
Start by identifying species that exist as ions. In general, such species include:
- Soluble salts.
- Strong acids and strong bases.
All four species in this particular question are salts. However, only three of them are generally soluble in water: , , and . These three salts will exist as ions:
- Each formula unit will exist as one ion and one ion.
- Each formula unit will exist as one ion and two ions (note the subscript in the formula .)
- Each formula unit will exist as one and two ions.
On the other hand, is generally insoluble in water. This salt will not form ions.
Rewrite the original chemical equation to get the corresponding ionic equation. In this question, rewrite , , and (three soluble salts) as the corresponding ions.
Pay attention to the coefficient of each species. For example, indeed each formula unit will exist as only one ion and one ion. However, because the coefficient of in the original equation is two, alone should correspond to two ions and two ions.
Do not rewrite the salt because it is insoluble.
.
Eliminate ions that are present on both sides of this ionic equation. In this question, such ions include one unit of and two units of . Doing so will give:
.
Simplify the coefficients:
.
Answer:
There are necessaries 35,2g of NH₄NO₃ per 100,0g of water to decrease the temperature of the solution from 25,0°C to 5,0°C
Explanation:
To decrease the temperature of the solution there are necessaries:
4,184J/g°C×(5,0°C-25,0°C)×(100,0g+X) = -Y
8368J + 83,68J/gX = Y <em>(1)</em>
Where x are grams of NH₄NO₃ you need to add and Y is the energy that you need to decrease the heat.
Also, the energy Y will be:
Y = 25700J/mol×X
Y = 321J/g X <em>(2)</em>
Replacing (2) in (1)
8368J + 83,68J/g X = 321J/g X
8363J = 237,32J/gX
<em>X = 35,2g</em>
<em />
Thus, there are necessaries 35,2g of NH₄NO₃ per 100,0g of water to decrease the temperature of the solution from 25,0°C to 5,0°C
I hope it helps!