Answer:
They probably use aerobic respiration.
Explanation:
A travel distance of 11.500 kilometers in 9 days covered by flying surely requires a lot of energy.
- If cells are fermenting, the ATP (energy) they generate only comes from glycolysis, which produces 2 ATP molecules.
- If they are using aerobic respiration, glucose is completely oxidized to CO₂ through glycolysis and the Citric Acid Cycle, and the electrons enter the electron transport chain to finally reduce oxygen into water. In the complete process, up to 36 ATP molecules are produced.
In sum, aerobic respiration is much more efficient to generate energy than fermentation, so it's probably the main metabolism of the flight muscles in bar-tailed godwits.
There is approx 4.7-5.5 liters of blood in his or her vascular system.
Answer:
Both electron transport and a proton gradient
Explanation:
The process of oxidative phosphorylation in mitochondria and electron transport chain in photosynthesis undergo chemiosmosis to produce ATP molecules.
Chemiosmosis is a process where the energy utilized by the movement of proton and electrons produces ATP molecules.
Both the processes involve the movement of electrons through electron carriers where the reduced energy is utilized to drive the flow of protons through the plasma membrane. This creates a proton gradient across the plasma membrane which rotates the ATP synthase and converts the ADP molecules into ATP molecules.
Thus, the selected option is correct.
Answer:nuclear reactor, solar panel
Explanation:there are several papers about going to moon and making a working habitat system a moon base, but we need power and i am confuse with which is best source for generating power for moon mission.