Step-by-step explanation:
f(x) + n - shift the graph n units up
f(x) - n - shift the graph n units down
f(x - n) - shift the graph n units to the right
f(x + n) - shift the graph n units to the left
f(-x) - reflection over the y-axis
-f(x) - Reflection over the x-axis
=======================================
f(x) = ln(x)
1. 2 units up → f(x) + 2 = ln(x) + 2
2. 2 units right → f(x - 2) = ln(x - 2)
3. 2 units left → f(x + 2) = ln(x + 2)
4. Reflect y-axis → f(-x) = ln(-x)
If these are further transformations of the graph, then:
1. f(x) + 2 = ln(x) + 2
2. f(x - 2) + 2 = ln(x - 2) + 2
3. f(x - 2 + 2) + 2 = f(x) + 2 = ln(x) + 2
4. f(x) + 2 - 2 = f(x) = ln(x)
5. f(-x) = ln(-x)