The formula we use
here is:
radial acceleration =
ω^2 * R <span>
110,000 * 9.81 m/s^2 = ω^2 * 0.073 m
<span>ω^2 = 110,000 * 9.81 / 0.073
ω = 3844.76 rad/s </span></span>
<span>and since: ω = 2pi*f --> f = ω/(2pi)</span><span>
f = 3844.76 / (2pi) = 611.91 rps = 611.91 * 60 rpm
<span>= 36,714.77 rpm </span></span>
Answer:
-0.80985201682
Explanation:
Couldn't you have used Google???
<span>You can use the equation
V_xf = V_xi + a_x(t)
V_xf = 20.0m/s
V_xi = 0m/s
ax = 2.0
t
Thus, solve for t and get 10seconds
and then take 5 seconds to break after 20 seconds of driving
so for
a) 10 + 20 + 5 = 35 seconds
</span><span>for part b)
You can use the formula
Delta x/Delta t = average velocity
Need to find xf, knowing xi = 0
Thus, use the formula
x_f = x_i + V_xi(t) + (1/2)a_x(t)^(2)
x_f = 0 + 0(10) + (1/2)(2.0)(10)^(2)
x_f = 100m
so for the first 10 seconds the truck traveled 100ms
At a speed of 20m/s
20m/s = xm/20s
20*20 = x
x = 400
thus we have 100+400 = 500m
then it slows down from 500m to x_f
thus I use the equation
x_f = x_i + (1/2)(V_xf + V_xi)t
x_f = 500 + (1/2)(0 + 20)(5)
x_f = 500 + 50
x_f = 550
therefore the total distance traveled is 550m
</span>
<span>to calculate average velocity
550/35 = 16m/s
thus
V_xavg = 16m/s</span>
The handle of a metal pot gets warm when the water inside the pot starts to boil