Answer:
0.51 m
Explanation:
Using the principle of conservation of energy, change in potential energy equals to the change in kinetic energy of the spring.
Kinetic energy, KE=½kx²
Where k is spring constant and x is the compression of spring
Potential energy, PE=mgh
Where g is acceleration due to gravity, h is height and m is mass
Equating KE=PE
mgh=½kx²
Making x the subject of formula
Substituting 9.81 m/s² for g, 1300 kg for m, 10m for h and 1000000 for k then
Answer:
(A) Consists of a small number of tiny particles that are far apart- relative in their size.
Explanation:
An <em>ideal gas</em> is defined as a simplification of a real gas, with punctual particles, in which all collisions are elastic, with random displacements and with no attractive force between them.
The assumption of the particles being punctual make clear that they do not have size at all. So if they were far apart-relative in their size, they can not collide each other, that is why assumption (B) can not be possible (<u><em>for that particular case</em></u>).
It is clear that (A) is not an assumption for an ideal gas, because do not fit in any of its properties.
Elastic collision: It is a case in which the energy is conserved (Kinetic Energy).
Kinetic Energy: It is the energy that will have an object as a consequence of its movement.
The amplitude is from the absolute value of the 0 point on the y-axis to the highest(peak) or lowest(troph) point of the wave. In this question, 3cm is the highest and -3cm is the lowest, so the amplitude is 3cm.
I don't know if you need to complete this question or do it otherwise, however, I managed to find on the Internet on several places this completion of your sentence:
<span>Electric current flows through a long rod generating thermal energy at a uniform volumetric rate of q = 2 x 10</span>⁶ W/m³.
I'm not sure whether that is the answer you were looking for, but that's what I found.
Answer:
When you experience prolonged stress, your body needs those T-cells and white blood cells, and unfortunately, cortisol continues to suppress them, thus weakening your immune system over time.
Explanation:
Stress, Illness and the Immune System. ... When we're stressed, the immune system's ability to fight off antigens is reduced. That is why we are more susceptible to infections. The stress hormone corticosteroid can suppress the effectiveness of the immune system