When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
<h3>Compare and contrast the energy transfer of a roller coaster to that of a pendulum:</h3><h3>What is the transfer of energy in a roller coaster?</h3>
The transfer of potential energy to kinetic energy occur when the roller coaster move along the track. As the motor pulls the cars to the top, the body has more potential energy whereas when the body comes to the bottom , it has kinetic energy in the object.
<h3>What is the energy transfer in a pendulum?</h3>
As a pendulum swings, its potential energy changes to kinetic energy and kinetic energy changes into potential energy. At the top more potential energy is present.
So we can conclude that When the pendulum and roller coaster move to the top, its has more potential energy whereas when comes to the bottom has more kinetic energy.
Learn more about energy here: brainly.com/question/13881533
#SPJ1
Without counting wind resistance, They will both reach the ground at the same time. If we apply the concept of kinematics, such as the equation vf^2=vi^2 + 2ad. This equation doesn't count how big or how heavy the mass is, it only focuses on how fast where they in the start and how far are both of them from the ground. So if they both have the same distance and same initial veloctity, then they will reach the ground at the same time.
For example, Try dropping a pen and a paper(Vertically) at the same height, you'll see they'll reach the ground at the same time.
If you count wind resistance, the heavier ball will hit the ground faster, because the air molecules will resist the lighter ball compared to the heavier ball.
Answer: c. Generally, metals are ductile.
Explanation:
From the options given in the question, the correct statement is that"Generally, metals are ductile.
Ductility of a metal simply means that a metal can be plastically deform before it is then fractured. It implies that metals can be drawn to thin wires. The only exception we have in this case is mercury.
Answer:
<h2>inertia of motion </h2>
Explanation:
.... ...