Answer:
L₀ = L_f , K_f < K₀
Explanation:
For this exercise we start as the angular momentum, with the friction force they are negligible and if we define the system as formed by the disk and the clay sphere, the forces during the collision are internal and therefore the angular momentum is conserved.
This means that the angular momentum before and after the collision changes.
Initial instant. Before the crash
L₀ = I₀ w₀
Final moment. Right after the crash
L_f = (I₀ + mr²) w
we treat the clay sphere as a point particle
how the angular momentum is conserved
L₀ = L_f
I₀ w₀ = (I₀ + mr²) w
w = w₀
having the angular velocities we can calculate the kinetic energy
starting point. Before the crash
K₀ = ½ I₀ w₀²
final point. After the crash
K_f = ½ (I₀ + mr²) w²
sustitute
K_f = ½ (I₀ + mr²) ( w₀)²
Kf = ½ w₀²
we look for the relationship between the kinetic energy
=
K_f < K₀
we see that the kinetic energy is not constant in the process, this implies that part of the energy is transformed into potential energy during the collision
Given :
Initial speed of car A is 15 m/s and initial speed of car B is zero.
Final speed of car A is zero and final speed of car B is 10 m/s.
To Find :
What fraction of the initial kinetic energy is lost in the collision.
Solution :
Initial kinetic energy is :
Final kinetic energy is :
Now, fraction of initial kinetic energy loss is :
Therefore, fraction of initial kinetic energy loss in the collision is 1.25 .
Measuring density: Measure the mass (in grams) of each mineral sample available to you. The mass of each sample is measured using a balance or electronic scale. Record mass on a chart.
Answer:
the magnitude of the average contact force exerted on the leg is 3466.98 N
Explanation:
Given the data in the question;
Initial velocity of hand v₀ = 5.25 m/s
final velocity of hand v = 0 m/s
time interval t = 2.65 ms = 0.00265 s
mass of hand m = 1.75 kg
We calculate force on the hand F
using equation for impulse in momentum
F × t = m( v - v₀ )
we substitute
F × 0.00265 = 1.75( 0 - 5.25 )
F × 0.00265 = 1.75( - 5.25 )
F × 0.00265 = -9.1875
F = -9.1875 / 0.00265
F = -3466.98 N
Next we determine force on the leg F
Using Newton's third law of motion
for every action, there is an equal opposite reaction;
so, F = - F
we substitute
F = - ( -3466.98 N )
F = 3466.98 N
Therefore, the magnitude of the average contact force exerted on the leg is 3466.98 N