The answer to this question is theory
Answer:
Attractions between molecules cause a reduction in volume
Explanation:
Hydrocarbons
Hope this helps :)
The amount of heat lost by granite is equal to the amount
of heat gained by water. Therefore their change in enthalpies must be equal.
The opposite in sign means that one is gaining while the other is losing
ΔH granite = - ΔH water
ΔH is the change in enthalpy experienced by a closed object
as it undergoes change in energy. This is expressed mathematically as,
ΔH = m Cp (T2 – T1)
Given this information, we can say that:
12.5 g * 0.790 J / g ˚C * (T2 – 82 ˚C) =
- 25.0 g * 4.18 J / g ˚C
* (T2 – 22 ˚C)
9.875 (T2 – 82) = 104.5 (22 – T2)
9.875 T2 – 809.75 = 2299 – 104.5 T2
114.375 T2 = 3108.75
T2 = 27.18 ˚C
The temperature of 2 objects after reaching thermal
equilibrium is 27.18 ˚<span>C.</span>
Answer:
Br
|
Br-P-Br
|
Br
Explanation:
To calculate the valance electrons, look at the periodic table to find the valance electrons for each atom and add them together. P is in column 5A, so it has 5, Br is in column 7A, so it has 7 (multiply by 4 since there are 4 Br atoms to give 28) and there is a 1- charge, so add one more electron. 5+28+1=34, so there are 34 electrons to place. P would be the central atom, so place it in the middle. Place each Br around the P (as shown above) with a a single line connecting it. Each line represents 2 electrons, so 8 total have been place, leaving 26 remaining. Place 6 electrons around each Br (2 on each of the unbonded sides), which leaves 2 electrons remaining. The remaining pair of unbound electrons will be attached to the P between any two Br atoms. Phosphorus doesn't have to follow the octet rule, so it actually ends up with 10 valance electrons.