Answer:
The answer is "False"
Explanation:
The geologic time scale is the "schedule" for occasions in Earth history. It partitions time into named units of unique time called in descending order of duration "eons, eras, periods, epochs, and ages". The specification of those geologic time units depends on stratigraphy, which is the relationship and order of rock layers. The fossil structures that happen in the stones, nonetheless, give the central methods for setting up a geologic time scale, with the circumstance of the development and vanishing of far and wide species from the fossil record being used to outline the beginnings and endings of ages,, periods, and different stretches.
Geologic time is the broad time period involved by the geologic history of Earth. Formal geologic time starts toward the beginning of the Archean Eon (4.0 billion to 2.5 billion years back) and proceeds to the current day.
The two will fall at the same speed and reach the surface at the same time. This is because the two will experience the same gravitational acceleration on the moon. However, on the earth surface the two will land on the surface of the earth at the same time due to air resistance such that the egg will experience a higher air resistance than the hammer. On, the moon, where there is no noticeable atmosphere there is no air resistance on either object and both fall at the same speed. It is also important to note that their mass doesn't affect their speed.
Answer:
C = 1.01
Explanation:
Given that,
Mass, m = 75 kg
The terminal velocity of the mass,
Area of cross section,
We need to find the drag coefficient. At terminal velocity, the weight is balanced by the drag on the object. So,
Weight of the object = drag force
R = W
or
Where
is the density of air = 1.225 kg/m³
C is drag coefficient
So,
So, the drag coefficient is 1.01.
Neutral. A neutron doesn’t have a positive charge like a proton or a negative charge like an electron.