Answer:
V KOH = 41 mL
Explanation:
for neutralization:
- ( V×<em>C </em>)acid = ( V×<em>C </em>)base
∴ <em>C </em>H2SO4 = 0.0050 M = 0.0050 mol/L
∴ V H2SO4 = 41 mL = 0.041 L
∴ <em>C</em> KOH = 0.0050 N = 0.0050 eq-g/L
∴ E KOH = 1 eq-g/mol
⇒ <em>C</em> KOH = (0.0050 eq-g/L)×(mol KOH/1 eq-g) = 0.0050 mol/L
⇒ V KOH = ( V×<em>C </em>) acid / <em>C </em>KOH
⇒ V KOH = (0.041 L)(0.0050 mol/L) / (0.0050 mol/L)
⇒ V KOH = 0.041 L
Spontaneous = exothermic. If it is not spontaneous, it is endothermic. ΔG > 0, which means that the reaction uses energy instead of emitting it.
The phenomenon that naturally warms the earth's lower atmosphere and surface is called the greenhouse effect.
Put me as Brainliest!!!
Answer:
The molar mass of lysine using the ideal gas equation for this problem is 146.25 g/mole.
Explanation:
The ideal gas equation PV = nRT, was derived from the ABC laws (Avogadros, Boyles and Charles laws). We need to obtain the value for the number of moles n.
The parameters of this equation are:
P = 1.918 atm
V = 750.0mL = 0.75L
n = ?
R = 0.0821
T = 25 degree celcius = 25 + 273 = 298 degree kelvin.
From this formular, n = (PV)/(RT)
n = (1.918 X 0.75)/(0.0821 X 298 )
n = 0.0588
n, no of mole = mass/molar mass
0.0588 = 8.6/MM
MM = 8.6/0.0588
MM = 146.25g/mole.
the correct answer is.. ill tell you when i search it up gimme 2 seconds