Answer:
A. since Nitrogen has 7 electrons and when it gains 3 electrons it will have 10 electrons. using short hand rule it is [Ne]
Answer:
- Both accurate and precise.
Explanation:
The experimental data is characterized as the data that is generated through a specific test or measurement with the purpose of analysis or evaluation. As per the question, the minuteness of the given data(29.27, 29.32, and 29. 27)most aptly describes that the experimental data collected by the student possesses 'accuracy and precision' apt and specific. It would yield the most worthy and reliable conclusion.
Answer:
Explanation:
2 HCl(g) + Mg(s) → MgCl₂(s) + H₂(g)
Let's calculate the quantity of mole of produced hydrogen with the Ideal Gases Law
P . V = n . R .T
2.19 atm . 6.82L = n . 0.082 . 308K
(2.19 atm . 6.82L) / (0.082 . 308K) = n
0.591 mol = n
1 mol of H₂ gas came from 2 mol of hydrochloric, so, 0.591 mol came from the double of mole
0.591 .2 = 1.182 mole of acid.
Molar mass of HCl = 36.45 g/m
1.182 mole are (36.45 g/m . 1.182g ) contained in 43.1 g
Density HCl = HCl mass / HCl volume
0,118 g/mL = 43.1 g / HCl volume
43.1 g / 0.118 g/mL = 365.3 mL (HCl volume)
Solution:
The idea of an atom proposed by the Greek philosophers because:
According to Greek Philosopher, matter is composed of small and indivisible particles called atoms. He introduced atoms as too small to be seen, unchangeable, completely solid without internal structure. He proposed that atoms are of variety of shapes and sizes which is responsible for different types of matter.
But according to Dalton’s atomic theory, chemical elements have atoms, which are identical in weight. The different elements have different atoms of different weight. Atoms can combine in whole-number ratios to form compounds. These observations are already introduced by Greek philosopher, but the idea of atomic weight is introduced by Dalton. He introduced the list of 21 elements with their atomic weights and, he was the first to propose the element’s symbol.
Answer:
1.02 × 10⁶ g
Explanation:
Step 1: Given data
- Volume of the balloon (V): 5400 m³
- Absolute pressure (P): 1.10 × 10⁵ Pa
- Molar mass of He (M): 4.002 g/mol
Step 2: Convert "V" to L
We will use the conversion factor 1 m³ = 1000 L.
5400 m³ × 1000 L/1 m³ = 5.400 × 10⁶ L
Step 3: Convert "P" to atm
We will use the conversion factor 1 atm = 101325 Pa.
1.10 × 10⁵ Pa × 1 atm / 101325 Pa = 1.09 atm
Step 4: Calculate the moles of He (n)
We will use the ideal gas equation.
P × V = n × R × T
n = P × V / R × T
n = 1.09 atm × 5.400 × 10⁶ L / 0.08206 atm.L/mol.K × 280 K
n = 2.56 × 10⁵ mol
Step 5: Calculate the mass of He (m)
We will use the following expression.
m = n × M
m = 2.56 × 10⁵ mol × 4.002 g/mol
m = 1.02 × 10⁶ g