Oxygen and hydrogen share electrons in the molecule of water to form covalent bonds.
<h3>What kinds of bonds exist?</h3>
- Covalent bonds: These are formed between nonmetals and electrons by sharing electrons.
- Ionic bonds: These are formed between metals, which lose electrons, and nonmetals, which gain electrons.
- Metallic bonds: There are formed between metals. Electrons are delocalized in a cloud.
Water, H₂O, is a molecule made of 2 nonmetals: oxygen and hydrogen. The bonds that hold water molecules together are due to shared electrons, and known as covalent bonds.
Oxygen and hydrogen share electrons in the molecule of water to form covalent bonds.
Learn more about chemical bonds here: brainly.com/question/6071754
In diesel engines, the chemical energy in the fuel is changed to heat energy, causing the pistons to expand via mechanical energy. The mechanical energy is finally converted to kinetic energy, which is observed as the movement of the vehicle.
Answer:
A
Explanation:
True igneous rock forms cooling of magma fast on the top
<h2>Step 1 : Identify the given </h2>
Volume = 250mL
Density = 1.19 g/ML
<h2>Step 2 . Calculate the mass of HCL </h2>
Density = mass/volume
∴Mass = Density * Volume
= 1.19g/mL* 250mL
= 297,5g
<h2>Step 3 : Calculate the total mass of the solution, given that concentration HCL is 38% </h2>
Mass of the total solution can be calculated by the following :
38% = Mc /297.5 * 100
Mc = 38/100 *297.5
= 113.05grams
• Finally, this means that mass of the total solution of 0.125M HCL i,s 113grams, ,you would use this mass to prepare 250 mL of 0.125 M HCl from concentrated HCl (aq) that is 38.0%
Answer:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
Explanation:
Chemical equation:
Al + ZnCl₂ → Zn + AlCl₃
Balanced Chemical equation:
2Al + 3ZnCl₂ → 3Zn + 2AlCl₃
This is the example of single displacement reaction. Al displace the zinc and form aluminium chloride and zinc metal.
There are two Al three zinc and six chlorine atoms on both side of equation so it is correctly balanced.
Thus it completely follow the law of conservation of mass.
Law of conservation of mass:
According to the law of conservation mass, mass can neither be created nor destroyed in a chemical equation.
This law was given by french chemist Antoine Lavoisier in 1789. According to this law mass of reactant and mass of product must be equal, because masses are not created or destroyed in a chemical reaction.