Light rays change direction when they hit a mirror. The phenomenon is known as reflection. Light rays travels in a straight light. They strike the surface of the mirror at a particular angle called incident angle. It is the angle between the ray and normal at the point of contact. The rays leaves the surface making the same angle with the normal called reflection angle but in different direction.
Answer:
(a) 3.807 s
(b) 145.581 m
Explanation:
Let Δt = t2 - t1 be the time it takes from the moment when the motorcycle starts to accelerate until it catches up with the car. We know that before the acceleration, both vehicles are travelling at a constant speed. So they would maintain a distance of 58 m prior to the acceleration.
The distance traveled by car after Δt (seconds) at speed is
The distance traveled by the motorcycle after Δt (seconds) at speed and acceleration of a = 8 m/s2 is
We know that the motorcycle catches up to the car after Δt, so it must have covered the distance that the car travels, plus their initial distance:
(b)
Calculate force of each car:
P1 = 900 kg x 12m/s = 10,800
P2= 600 x 24 = 14,400
Degree of travel = arctan(14,300/10800)
Degree of travel = 53.1 N of E
A complete cycle of phases is 29.531 days.
From full-moon to new-moon is half of that.
The displacement is 2 m south
Explanation:
Distance and displacement are two different quantities:
- Distance is the total length of the path covered by an object during its motion, regardless of the direction. It is a scalar quantity
- Displacement is a vector connecting the initial position to the final position of motion of an object. The magnitude of the displacement is the distance in a straight line between the two points
For the car in this problem, the motion is:
10 m south
8 m north
Taking north as positive direction, we can describe the two parts of the motion as
m
Therefore, the final position of the car with respect to the original position is
which means 2 m south: so, the displacement of the car is 2 m south.
Learn more about distance and displacement:
brainly.com/question/3969582
#LearnwithBrainly