Answer:
The claim that the scores of UT students are less than the US average is wrong
Step-by-step explanation:
Given : Sample size = 64
Standard deviation = 112
Mean = 505
Average score = 477
To Find : Test the claim that the scores of UT students are less than the US average at the 0.05 level of significance.
Solution:
Sample size = 64
n > 30
So we will use z test
Formula :
Refer the z table for p value
p value = 0.9772
α=0.05
p value > α
So, we accept the null hypothesis
Hence The claim that the scores of UT students are less than the US average is wrong
C = 2m^2 + m
D = 2 - 6m + 2m^2
2C = 2(2m^2 + m) = 4m^2+2m
2D = 2(2-6m+2m^2) = 4-12m+4m^2
2C - 2D =
4m^2+2m-(4-12m+4m^2) =
4m^2+2m-4+12m-4m^2 =
0m^2 + 14m -4 =
14m - 4
Answer:
b is the answer by solomon
Hej!
You would need to multiply both sides by -1
Resulting in...
y=2x-5