There are 2 possible answers here : b and d.
The Ideal Gas Equation is : <u>PV = nRT</u>
<u />
Here, when pressure is increased and temperature is lowered, the volume of the molecules will substantially decrease, which means it has deviated from ideal behavior.
Answer:
Explanation:
A. Attached is a page which contain the structural formula of the three compounds of C3H80.
Condensed structural formula of C3H8O:
Propan-1-ol: CH3CH2CH2OH
Propan-2-ol: CH3CH(OH)CH3
Methoxy methane: CH3OCH2CH3
B. Attached are is a page which contain the structural formula of the three compounds of C3H60.
Condensed structural formula of C3H6O:
Propanal: CH3CH2CHO
Propanone: CH3COCH3
Cyclopropanol: (C3H5)OH
2-propen-1-ol: CH2CHCH2OH
1-propenol: CH3CHCHOH
The major alkene product that results when n,n-dimethylhexan-2-amine undergoes cope elimination is hexene or hex-1-ene.
The reaction in which an amine is oxidize to an intermediate called an N-oxide which , when heated , acts as base in an intramolecular elimination reaction. The oxidation of tertiary amine into N-oxide is called cope reaction.
This elimination gives the less substituted alkene along with more substituted alkene which is Zaitsev product.
Example: Cope elimination of n,n-dimethylhexan-2-amine form hexene.
To learn more about alkene ,
brainly.com/question/13910028
#SPJ4
Answer:
The answer to your question is: Initial temperature of copper = 67.1°C
Explanation:
Data
mass Copper = 248 g
volume Water = 390 ml
T1 water = 22.6°C
T2 = 39.9°C
T1 copper = ?
Specific heat water = 1 cal/g°C
Specific heat copper = 0.092 cal/g°C
Formula copper water
Heat is negative for copper because it releases heat
- mCp(T2 - T1) = mCp(T2 - T1)
- (248)(39.9 - T1) = 390 (1)((39.9 - 22.6) Substitution
-9895.2 + 248T1 = 390(17.3) Simplification
-9895.2 + 248T1 = 6747
248 T1 = 6747 + 9895.2
248 T1 = 16642.2
T1 = 16642.2 / 248
T1 = 67.1 °C Result
<span>The constant bombardment of gas molecules against the inside walls of a container produces Pressure.
Explanation:
Pressure is defined as Force per unit Area.
P = F / A
In case of gases, the gas molecules have high Kinetic Energy and they move with high velocity. This cause them to strike against the inside wall of the container. Pressure is directly proportional to temperature. Increase in temperature cause to increase the Kinetic Energy of molecules, Hence, the rate of collisions increases resulting in increasing the pressure.</span>