Answer:
<em>When salt is dissolved in water</em>, many physical properties change, among them the so called colligative properties:
- The vapor pressure of water decreases,
- The boiling point increases,
- The freezing point decreases, and
- Osmotic pressure appears.
Explanation:
Colligative properties are the physical properties of the solvents whose change is determined by the number of particles (moles or ions) of the solute added.
The colligative properties are: vapor pressure, boiling point, freezing point, and osmotic pressure.
<u>Vapor pressure</u>:
The vapor pressure is the pressure exerted by the vapor of a lquid over its surface, in a closed vessel.
The vapor pressure increases when a solute is added, because the presence of the solute causes less solvent molecules to be near the surface ready to escape to the vapor phase, which means that the vapor pressure is lower.
<u>Boiling point</u>:
The boiling point is the temperature at which the vapor pressure of the liquid equals the atmospheric pressure. Since we have seen that the vapor pressure of water decreases when a solute occupies part of the surface, now more temperature will be required for the water molecules reach the atmospheric pressure. So, the boiling point increases when salt is dissolved in water.
<u>Freezing point</u>:
The freezing point is the temperarute at which the vapor pressure of the liquid and the solid are equal. Since, the vapor pressure of water with salt is lower than that of the pure water, the vapor pressure of the liquid and solid with salt will be equal at a lower temperature. Hence, the freezing point is lower (decreases).
<u>Osmotic pressure</u>:
Osmotic pressure is the additional pressure that must be exerted over a solution to make that the vapor pressure of the solvent in the solution equals the vapor pressure of the pure solvent. This additional pressure is proportional to the concentration of the solute: the higher the salt concentration the higher the osmotic pressure.
Answer:
Always equal to the total moles of the products.
Explanation:
The law of conservation of mass states that mass in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the law of conservation of mass, the mass of the products in a chemical reaction equal to the mass of the reactants.
Potassium and Chloride forms an ionic bond.
(K+) + (Cl-) = KCl
Potassium is under Group IA (Alkali Metal), wherein elements under this group can easily lose electrons.
Chlorine is under Group VII (Halogens), in which these elements can gain electrons easily.
The inner shell electrons on potassium will merge with the outer shell of electrons of chlorine to make potassium chloride.
The presence of a large population of sludgeworms indicates water depleted of oxygen and a high level of organic pollution.
The sludgeworms Tubifex is harvested and sold as tropical fish food since it is common near sewer outlets and serves as a sign of water or organic pollution. Polychaetes are crucial in rearranging the silt on the ocean floor.
Organic contamination happens when too much organic material, such sewage or manure, gets into the water.
There will be more decomposers and sludgeworms in a pond as the organic content accumulates. These decomposers and sludgeworms develop quickly and consume a lot of oxygen as they do so.
Hence, Sludgeworms are a sign of an abundance of oxygen-depleted water and significant levels of organic pollutants.
Learn more about Water pollution here brainly.com/question/1235358
#SPJ4
The question in incomplete, complete question is;
Determine the theoretical yield:
Excess aqueous copper(II) nitrate reacts with aqueous sodium sulfide to produce aqueous sodium nitrate and copper(II) sulfide as a precipitate. In this reaction 469 grams of copper(II) nitrate were combined with 156 grams of sodium sulfide to produce 272 grams of sodium nitrate.
Answer:
The theoretical yield of sodium nitrate is 340 grams.
Explanation:
Moles of copper(II) nitrate =
Moles of sodium sulfide =
According to reaction, 1 mole of copper (II) nitrate reacts with 1 mole of sodium sulfide.
Then 2 moles of sodium sulfide will react with:
of copper (II) nitrate
As we can see from this sodium sulfide is present in limiting amount, so the amount of sodium nitrate will depend upon moles of sodium sulfide.
According to reaction, 1 mole of sodium sulfide gives 2 mole of sodium nitrate, then 2 mole of sodium sulfide will give:
sodium nitrate
Mass of 4 moles of sodium nitrate :
85 g/mol × 4 mol = 340 g
Theoretical yield of sodium nitrate = 340 g
The theoretical yield of sodium nitrate is 340 grams.