Answer:
The length of line is 78 cm or 0.78 m.
Explanation:
initial reading 2 mark
final reading 80 cm
The length of the line
= final reading - initial reading
= 80 - 2
= 78 cm
1 cm = 0.01 m
So, 78 cm = 0.78 m
The following answers in the blank could be Sigmund Freud who found the psychoanalysis and Karen Horney who is known to be a psychoanalyst. Both of them has the idea that childhood experiences is necessary and plays the important role in the individual as he or she grows.
The solution you should use is Hooke's law: F=-kx
It should have the same signs because they repel due to the stretch of the spring.
a. Since there is a constant energy within the spring, then Hooke's law will determine the possible algebraic signs. The solution should be
<span>F = kx
270 N/m x 0.38 m = 102.6 N
</span>
b. Then use Coulomb's law; F=kq1q2/r^2 to find the charges produced in the force.
Answer:
0.34 m
Explanation:
From the question,
v = λf................ Equation 1
Where v = speed of sound, f = frequency, λ = Wave length
Make λ the subject of the equation
λ = v/f............... Equation 2
Given: v = 340 m/s, f = 500 Hz.
Substitute these values into equation 2
λ = 340/500
λ = 0.68 m
But, the distance between a point of rarefaction and the next compression point, in the resulting sound is half wave length
Therefore,
λ/2 = 0.68/2
λ/2 = 0.34 m
Hence, the distance between a point of rarefaction and the next compression point, in the resulting sound is 0.34 m
Answer:
H(max) = (v²/2g)
Explanation:
The maximum height the ball will climb will be when there is no friction at all on the surface of the hill.
Normally, the conservation of kinetic energy (specifically, the work-energy theorem) states that, the change in kinetic energy of a body between two points is equal to the work done in moving the body between the two points.
With no frictional force to do work, all of the initial kinetic emergy is used to climb to the maximum height.
ΔK.E = W
ΔK.E = (final kinetic energy) - (initial kinetic energy)
Final kinetic energy = 0 J, (since the body comes to rest at the height reached)
Initial kinetic energy = (1/2)(m)(v²)
Workdone in moving the body up to the height is done by gravity
W = - mgH
ΔK.E = W
0 - (1/2)(m)(v²) = - mgH
mgH = mv²/2
gH = v²/2
H = v²/2g.