Since there is one mole of Ca^2+ in calcium acetate, its concentration is 0.80 mol/L.
<h3>What is concentration?</h3>
The term concentration has to do with the amount of substance in solution. The concentration can be measured in several units. Generally, concentration is expressed in molarity, molality, mass concentration units or percentage.
Now we are asked to find the amount concentration of calcium ions and acetate ions in a 0.80 mol/L solution of calcium acetate. The formula of calcium acetate is Ca(CH3COO)2.
Thus;
Ca(CH3COO)2(aq) ----> Ca^2+(aq) + 2CH3COO^-(aq)
It then follows that since there is one mole of Ca^2+ in calcium acetate, its concentration is 0.80 mol/L.
Learn more about concentration:brainly.com/question/10725862
#SPJ1
Answer:
Protective fruit
Explanation:
Angiosperm seeds grow in the middle of flower's ovaries and are covered by a defensive fruit.
Answer:
Option a. 0.5 m/s
Explanation:
This graph shows a straight line, where "Y" axis would be "Position" and "X" graph would be "Time". The ecuation that would describe this straight line is Y= aX + 1 , where "a" is the slope or inclination for this graph, and would give us the speed of the object
How do we find the slope (and hence, the speed)?: if you notice this graph, you will check that:
-When X (Time) is zero, Y (Position) is 1
-When X (Time) is 2, Y (Position) is 2
With these 4 points, you can calculate the slope (which will call "m") for this graph with:
m = (Y2-Y1)/(X2-X1) so: Y2=2, Y1=1, X2=2, X1=0
Which gives us: m=1/2 (0.5), the slope or speed of the object: 0.5 m/s
Gibbs free energy of a reaction (
Δ
G ) is the change in free energy of a system that undergoes the chemical reaction. It is the energy associated with the reaction, which is available to do some useful work. If ΔG<0
, then the reaction can be utilized to do some useful work. If
ΔG>0
, then work has to be done on the system or external energy is required to make the reaction happen. ΔG=0 when the reaction is at equilibrium and there is no net change taking place in the system.