Answer:
Gravity is the force of attraction between two objects; it is dependent upon the mass of the objects and the distance between the objects.
Explanation:
Gravity is defined as the force of attraction between two objects. It depends on the masses of objects and the distance between them. The gravitational force between two bodies is given by the universal law of gravitation. According to this law, the force of gravity is :
Where
G is the universal gravitational constant
m₁ and m₂ are masses of two bodies
d is the distance between two bodies
Hence, the correct statement that describes gravity is (b)
Answer:
Explanation:
<u>Net Force And Acceleration
</u>
The Newton's second law relates the net force applied on an object of mass m and the acceleration it aquires by
The net force is the vector sum of all forces. In this problem, we are not given the magnitude of each force, only their angles. For the sake of solving the problem and giving a good guide on how to proceed with similar problems, we'll assume both forces have equal magnitudes of F=40 N
The components of the first force are
The components of the second force are
The net force is
The magnitude of the net force is
The acceleration has a magnitude of
The direction of the acceleration is the same as the net force:
According to the Jefferson lab, "The scientific definition of work is: using a force to move an object a distance (when both the force and the motion of the object are in the same direction.)"
Answer:
Astronomers have divided the eight planets of our solar system into the inner planets and the outer planets. The 4 inner planets are the closest to the Sun, and the outer planets are the other four – Jupiter, Saturn, Uranus, and Neptune. The outer planets are also called the Jovian planets or gas giants.
Explanation:
Explanation:
Lasers produce a narrow beam of light in which all of the light waves have very similar wavelengths. The laser's light waves travel together with their peaks all lined up, or in phase. This is why laser beams are very narrow, very bright, and can be focused into a very tiny spot.