Going by the data given, the best center of distribution to use in terms of mean and median is D) Mean for Bakery A because the data is symmetric; median for Bakery B because the data is not symmetric.
<h3>What centers of distribution should be used?</h3>
The mean should be used for data sets that are symmetric while the median should be used for data that is not symmetric.
The data is said to be symmetric when the mean and median are equal or very close.
Bakery A mean:
= (45 + 52 + 51 48 + 61 + 34 + 55 46) / 8
= 49
Bakery A median is 49.5
Bakery B mean:
= (48 42 + 25 45 + 57 + 10 + 43 + 46 ) / 8
= 39.5
Bakery B median is 44.
This shows that Bakery A data is symmetric so the best center of distribution to use is mean.
Bakery B is not symmetric so the center of distribution to use is median.
Find out more on symmetric data at brainly.com/question/7130507
#SPJ1
A Rhombus and a Kite are the same thing they are the answer
Step-by-step explanation:
None of these,
a(under root),a, a(square)
this is the correct answer
Answer:
15000(1.003425)^12t ;
4.11%
4.188%
Step-by-step explanation:
Given that:
Loan amount = principal = $15000
Interest rate, r = 4.11% = 0.0411
n = number of times compounded per period, monthly = 12 (number of months in a year)
Total amount, F owed, after t years in college ;
F(t) = P(1 + r/n)^nt
F(t) = 15000(1 + 0.0411/12)^12t
F(t) = 15000(1.003425)^12t
2.) The annual percentage rate is the interest rate without compounding = 4.11%
3.)
The APY
APY = (1 + APR/n)^n - 1
APY = (1 + 0.0411/12)^12 - 1
APY = (1.003425)^12 - 1
APY = 1.04188 - 1
APY = 0.04188
APY = 0.04188 * 100% = 4.188%
Your answer would be A, B, and C.