Answer:
chemical energy into thermal energy
Explanation:
The reaction taking place is as follows
2C₂H₂ + 5O₂ = 4CO₂ + 2H₂O + Heat
In this reaction bonds present in acetylene is broken and new bond present in water and carbon dioxide are formed . In the whole process of bond breaking and bond formation , there is net loss of energy and that energy is released as heat energy .
Thus we can say that in the whole process , chemical energy is converted into heat energy .
The answer would be a planet<span>. Planets revolve around stars, which means there will come a point where the planet is between the star and our field of vision towards the star. This point will be where the star's radiation will have the lowest intensity. As the planet moves, the intensity will change. The effect is comparable to a lunar or solar eclipse.</span>
Answer:
11552.45 years
Explanation:
Given that:
Half life = 5730 years
Where, k is rate constant
So,
The rate constant, k = 0.00012 years⁻¹
Using integrated rate law for first order kinetics as:
Where,
is the concentration at time t
is the initial concentration
Given that:
The rate constant, k = 0.00012 years⁻¹
Initial concentration = 160.0 counts/min
Final concentration = 40.0 counts/min
Time = ?
Applying in the above equation, we get that:-
Answer:
I think the answer is boiling
Answer:
True
Explanation:
We know that the zero-point-energy of a C-D system is quite lower than the zero point energy of the C-H bond so the C-D bond is stronger.
Kinetic isotope effect refers to the change in the rate of reaction owing to a change of one of the atoms of the reactants by replacing it with one of its isotopes.
Since we know that the C-D bond is stronger than the C-H bond, when we replace hydrogen with deuterium in a reaction's rate determining step we experience a little lag in the rate of reaction. This is referred to as the kinetic isotope effect in physical organic chemistry.