Answer:
The solution is attached in the pictures below
Explanation:
Answer:
a = F-ff/m
Explanation:
According to Newton's second law of motion which states that "the rate of change in momentum of a body is directly proportional to the applied force F and acts in the direction of the force.
Mathematically;
F = ma
Since two forces acts on the cart i.e the moving force F and the frictional force Ff , we will take the sum of the forces.
∑F = ma where
m is the mass of the cart
a is its acceleration
∑F = F+(-ff )(since frictional force is an opposing force)
F - ff = ma
Dividing both sides by mass m
a = F-ff/m
Answer:
Sound wave is a longitudinal wave that propagates in a medium
Explanation:
<em>Part A:</em> (C) Sound wave is propagation of pressure fluctuations in a medium.
<em>Part B: </em>(C) Pressure fluctuations travel along the direction of propagation of the sound wave.
<em>Part C: </em>(A) Yes air play a role in the propagation of the human voice from one end of the lecture hall to the other.
Answer:
Push - The most common form of force is a push through physical contact (like a lawnmower or shopping cart)
Pull - You can apply a force by directly pulling on an object (like pulling a wagon)
Explanation:
There's not enough information to find an answer.
I think the idea here is that in descending (416 - 278) = 138 meters,
the glider gives up some gravitational potential energy, which
becomes kinetic energy at the lower altitude. This is all well and
good, but we can't calculate the difference in potential energy
without knowing the mass of the glider.