To solve this problem we will apply the linear motion kinematic equations. We will find the two components of velocity and finally by geometric and vector relations we will find both the angle and the magnitude of the vector. In the case of horizontal speed we have to
The vertical component of velocity is
Here,
h = Height
g = Gravitational acceleration
t = Time
= Vertical component of velocity
The direction of the velocity will be given by the tangent of the components, then
The magnitude is given vectorially as,
Therefore the angle is 55.59° and the velocity is 26.37m/s
Answer:
A) wood, water, neon gas
Explanation:
Matter, which constitutes every known substances is said to exists in three states namely: gaseous, solid and liquid. Each state of matter contain particles that make up their structure.
- Solids have well arranged particles that are tightly packed together to give it its solid shape. Example is wood
- Liquids have particles that are loosely packed together, hence, can still move about. Example is water
- Gases have particles that are not packed together, hence, their ability to roam freely. Example is neon gas
Based on this, the order of MOST to LEAST ordered particle arrangement is solid - liquid- gas i.e. wood - water - neon gas.
Answer:
D. the masses of the objects and the distance between them
Explanation:
Gravitation is a force, a force doesn't care about the shape or density of objects, only about their masses... and distances.
And you can get it using the following equation:
Where :
G is the universal gravitational constant
: G = 6.6726 x 10-11N-m2/kg2
m represent the mass of each of the two objects
d is the distance between the centers of the objects.
Answer:
-0.020475 V
Explanation:
= Vacuum permeability =
= Number of turns of coil = 25
= Number of turns of coil 2 = 300
= Rate of current increased =
d = Diameter = 2 cm
r = Radius =
A = Area =
Magnetic field in the solenoid is given by
Magnetic flux is given by
The average magnetic flux through each turn of the inner solenoid is
Mutual inductance is given by
The mutual inductance of the two solenoids is
Induced emf is given by
The emf induced in the outer solenoid by the changing current in the inner solenoid is -0.020475 V