Answer:
C = (2,2)
Step-by-step explanation:
B = (10 ; 2)
M = (6 ; 2)
C = (x ; y )
|___________|___________|
B (10;2) M (6;2) C ( x; y)
So:
dBM = dMC
√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 6)^2]
(2-2)^2 - (6-10)^2 = (y-2)^2 + (x - 6)^2
0 + (-4)^2 = (y-2)^2 + (x - 6)^2
16 = (y-2)^2 + (x - 6)^2
16 - (x - 6)^2 = (y-2)^2
Also:
2*dBM = dBC
2*√[(2-2)^2 + (6-10)^2] = √[(y-2)^2 + (x - 10)^2]
4*[(0)^2 + (-4)^2] = (y-2)^2 + (x - 10)^2
4*(16) = (y-2)^2 + (x - 10)^2
64 = (y-2)^2 + (x - 10)^2
64 = 16 - (x - 6)^2 + (x - 10)^2
48 = (x - 10)^2 - (x - 6)^2
48 = x^2 - 20*x + 100 - x^2 + 12*x - 36
48 = - 20*x + 100 + 12*x - 36
8*x = 16
x = 2
Thus:
16 - (x - 6)^2 = (y-2)^2
16 - (2 - 6)^2 = (y-2)^2
16 - (-4)^2 = (y-2)^2
16 - 16 = (y-2)^2
0 = (y-2)^2
0 = y - 2
2 = y
⇒ C = (2,2)
I'm pretty sure it has to have 1 over any number
Given:
The two points are (-5,8) and (-3,1).
To find:
The distance between the given two points in simplest radical form.
Solution:
Distance formula: The distance between two points is
Using distance formula, the distance between (-5,8) and (-3,1) is
Therefore, the distance between two points (-5,8) and (-3,1) is units.
Answer:
9
Step-by-step explanation: