If the goal of this question is to solve for x than the correct answer is 20. Hope this helped.
Answer: 40%
Step-by-step explanation: First determine whether the number increases or decreases. Since the number changes from 100 to 140 it's getting bigger, so it increases.
To find the percent increase, we use the following formula.
The amount of change is the difference between the two numbers which is 40 and we get this by subtracting 100 from 140. The original number will be the number that we started with which is 100.
140/100 simplifies to 0<em>.</em>4.
Finally, we want the percent increase so we write 0<em>.</em>4 as a percent by moving the decimal point 2 places to the right to get 40%.
Therefore, the percent increase is 40%.
Hi there!
To solve, we can use right triangle trigonometry.
Recall that:
sin = O/H, cos = A/H, tan = O/A.
For angle G, HF is its OPPOSITE side, and FG is the hypotenuse.
Therefore, we must use sine to evaluate:
sinG = 14 / 17
sin⁻¹ (14/17) = ∠G. Evaluate using a calculator.
∠G ≈ 55.44°
Answer:
d = k·sin(2θ)·sin(α)/(sin(θ)·sin(β))
Step-by-step explanation:
The Law of Sines tells us that sides of a triangle are proportional to the sine of the opposite angle. This can be used along with a trig identity to demonstrate the required relation.
__
<h3>top triangle</h3>
The law of sines applied to the top triangle is ...
BC/sin(A) = AC/sin(θ)
Triangle ABC is isosceles, so the base angles at B and C are congruent. Then the angle at vertex A is ...
∠A = 180° -θ -θ = 180° -2θ
A trig identity tells us the sine of an angle is equal to the sine of its supplement. That means the sine of angle A is ...
sin(A) = sin(180° -2θ) = sin(2θ)
and our above Law of Sines equation tells us ...
BC = sin(A)/sin(θ)·AC = k·sin(2θ)/sin(θ)
__
<h3>bottom triangle</h3>
The law of sines applied to the bottom triangle is ...
DC/sin(B) = BC/sin(D)
d/sin(α) = BC/sin(β)
Multiplying by sin(α) we have ...
d = BC·sin(α)/sin(β)
__
Using our expression for BC gives the desired relation:
d = k·sin(2θ)·sin(α)/(sin(θ)·sin(β))