The answer is D. I did that and i got it right.
Answer:
1.26x10^25 atoms of hydrogen
Explanation:
because there are 12 atoms of hydrogen in a molecule of glucose, multiply 12 by Avogadro's number (6.02x10^23) to get how many molecules of hydrogen there are in a mole of glucose. Then multiply that number by 1.75, which is the number of moles of glucose there is in this problem.
I disagree, because a physical change changes the form, and a chemical change is a process where one or more substances are altered into new substances.
Answer:
1.1 × 10² g
Explanation:
First, we will convert 1.0 L to cubic centimeters.
1.0 L × (10³ mL/1 L) × (1 cm³/ 1 mL) = 1.0 × 10³ cm³
The density of water is 1.0 g/cm³. The mass corresponding to 1.0 × 10³ cm³ is:
1.0 × 10³ cm³ × (1.0 g/cm³) = 1.0 × 10³ g
1 mole of water (H₂O) has a mass of 18 g, consisting of 2 g of H and 16 g of O. The mass of Hydrogen in 1.0 × 10³ g of water is:
1.0 × 10³ g H₂O × (2 g H/18 g H₂O) = 1.1 × 10² g