Kinetic energy = 1/2 m v^2 = 1/2 x1.5 x10^-3 x 0.36
Answer:
The magnitude of the electric force on a protein with this charge is
Explanation:
Given that,
Electric field = 1500 N/C
Charge = 30 e
We need to calculate the magnitude of the electric force on a protein with this charge
Using formula of electrostatic force
Where, F = force
E = electric field
q = charge
Put the value into the formula
Hence, The magnitude of the electric force on a protein with this charge is
Explanation:
It is given that,
Focal length of the concave mirror, f = -13.5 cm
Image distance, v = -37.5 cm (in front of mirror)
Let u is the object distance. It can be calculated using the mirror's formula as :
u = -21.09 cm
The magnification of the mirror is given by :
m = -1.77
So, the magnification produced by the mirror is (-1.77). Hence, this is the required solution.
I see a pillow
But you see...this bobcat
Cute ain’t it?
Coulomb's Law: Force = k x q1x q2 divided distance square
where k=9x10^9 , q1 and q2 are the charge
So if you distance is halved, your force is stronger by 4 times
and if you distance is doubled, your force is 1/4
Ask me again if you aren't clear :)