The net speed due west is = distance traveled in west / time taken = 120/0.5 = 240 km/h.
so airspeed due west is = net speed - speed of plane = 240-220= 20 km/h.
airspeed due south is = distance traveled in west / time taken= 20/0.5= 40 km/h.
the magnitude of the wind velocity = √[(airspeed due south )² + (airspeed due west)²] = √ ( 40^2 + 20^2 ) = 44.72 km/h
the angle of airspeed south of west is tan⁻¹ ( airspeed due south / airspeed due west )= tan⁻¹(40/20)=63.43 degrees.
if wind velocity is 40 km/h due south, her velocity should have 20 km/h component in north.
so component west = sqrt ( 220^2 - 40^2 ) = 216.33 km/h.
the angle north of west is arctan( 40/216.33 ) = 10.47 degrees.
The pressure at the bottom of a column of fluid in a container
depends only on the depth of the fluid, not on the shape of the
container. The pressure is simply the result of the weight of the
fluid resting on the bottom.
Answer:
Explanation:
When they encounter boundaries between different media, the waves react according to Snell’s law, and the angle of refraction across the boundary will depend on the velocity of the second media relative to the first