I believe Cuba and the Bahamas.
Answer:
Change in specific internal Energy
Explanation:
Given:
- Mass of the gas, m=0.4 lb
- Initial pressure and volume are
- Final pressure and temperature are
- Heat transfer from the gas is 2.1 Btu
Since the process is isotropic we have
So the final volume of the gas is calculated.
Work in any isotropic is given by w
According to the first law of thermodynamics we have
So the Specific Internal Change is given by
So the specific Change in Internal energy is calculated.
Answer:
a)
b) This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c) The material is peat, possibly.
d) The material cannot be ice because ice doesn't exists at a temperature of 100°C.
Explanation:
Given:
- mass of aluminium,
- mass of water,
- initial temperature of the system,
- mass of copper block,
- temperature of copper block,
- mass of the other block,
- temperature of the other block,
- final equilibrium temperature,
We have,
specific heat of aluminium,
specific heat of copper,
specific heat of water,
Using the heat energy conservation equation.
The heat absorbed by the system of the calorie-meter to reach the final temperature.
The heat released by the blocks when dipped into water:
where
specific heat of the unknown material
For the conservation of energy :
so,
b)
This value of specific heat is close to the specific heat of ice at -40° C and the specific heat of peat (a variety of coal).
c)
The material is peat, possibly.
d)
The material cannot be ice because ice doesn't exists at a temperature of 100°C.
Answer:
a) the charge of an electron is equivalent to the magnitude of the elementary charge but barring a negative sign since the side of the elementary charge is roughly 1.602 * 10 - 19 Columbus then the charge of the electronic is-1.602 * 10 - 19
b) b=2T on the electron moving in the magnetic field