Answer: Odor of ammonia would we detect first on the other side of the room.
Explanation:
To calculate the rate of diffusion of gas, we use Graham's Law.
This law states that the rate of effusion or diffusion of gas is inversely proportional to the square root of the molar mass of the gas. The equation given by this law follows:
Thus the odor of ammonia would we detect first on the other side of the room as the rate of effusion of ammonia would be faster as it has low molecular weight as compared to hydrogen sulphide.
Yes. If this is the balanced equation:
AlCl3 + 3Na —— 3NaCl + Al
then Al was reduced from a 3+ oxidation (to neutralize the 3- from the chlorine) to a 0 oxidation (elemental ground state).
Answer:
Kc for this reaction is 0.43
Explanation:
This is the equilibrium:
N₂(g) + 2H₂O(g) → 2NO(g) +2H₂(g)
And we have all the concentration at equilibrium:
N₂: 0.25M
H₂ : 1.3M
NO: 0.33M
H₂: 1.2M
They are ok, because they are in MOLARITY. (mol/L)
Let's make the expression for Kc
Kc = ( [NO]² . [H₂]² ) / ([N₂] . [H₂O]²)
Kc = (0.33² . 1.2²) / (0.25 . 1.2²)
Kc = 0.4356
In two significant digits. 0.43
Answer:
I think the answer is C but you might need a second opinion on this answer