Answer:
Coefficient
Explanation:
I am not that sure, but just wanted to help.
The volume of the buffer solution having a ph value is calculated by henderson's hasselbalch equation.
Buffer solution is water based solution which consists of a mixture containing a weak acid and a conjugate base of the weak acid. or a weak base and conjugate acid of a weak base.it is a mixture of weak acid and a base. The pH of the buffer solution is determined by the expression of the henderson hasselbalch equation.
pH=pKa + log [salt]/[acid]
Where, pKa =dissociation constant , A- = concentration of the conjugate base, [HA]= concentration of the acid. Here, a buffer solution contains 0.403m acetic acid and 250 ml is added in order to prepare a buffer with a ph of 4.750. Putting all the values in the henderson hasselbalch equation we find the pH of the buffer solution.
To learn more about hendersons hasselbalch equation please visit:
brainly.com/question/13423434
#SPJ4
Anything that has mass and volume (takes up space) is called matter.
C.
Because the spinal cord functions primarily in the transmission of neural signals between the brain and the rest of the body
<span>11.3 kPa
The ideal gas law is
PV = nRT
where
P = Pressure
V = Volume
n = number of moles
R = Ideal gas constant (8.3144598 L*kPa/(K*mol) )
T = Absolute temperature
We have everything except moles and volume. But we can calculate moles by starting with the atomic weight of argon and neon.
Atomic weight argon = 39.948
Atomic weight neon = 20.1797
Moles Ar = 1.00 g / 39.948 g/mol = 0.025032542 mol
Moles Ne = 0.500 g / 20.1797 g/mol = 0.024777375 mol
Total moles gas particles = 0.025032542 mol + 0.024777375 mol = 0.049809918 mol
Now take the ideal gas equation and solve for P, then substitute known values and solve.
PV = nRT
P = nRT/V
P = 0.049809918 mol * 8.3144598 L*kPa/(K*mol) * 275 K/5.00 L
P = 113.8892033 L*kPa / 5.00 L
P = 22.77784066 kPa
Now let's determine the percent of pressure provided by neon by calculating the percentage of neon atoms. Divide the number of moles of neon by the total number of moles.
0.024777375 mol / 0.049809918 mol = 0.497438592
Now multiply by the pressure
0.497438592 * 22.77784066 kPa = 11.33057699 kPa
Round the result to 3 significant figures, giving 11.3 kPa</span>