From the given equation we can deduce what changes will occur if the frequency of the sound is doubled
V= f (λ)
Speed = frequency. Wavelength
When the frequency is doubled, speed will not change. Because speed depends on factors like temperature, air pressure, density of the gas. Since all these factors are unchanged thus speed will remain unchanged
Frequency is the number of waves produced per second. Frequency and wavelength are inversely proportional .Thus, if the frequency is doubled the wavelength would be halved.
As the gas cools down, particle movement slows down with it, and so does the temperature of the gas. This is because the more heat or thermal energy a gas has, the faster the particles move. This is why absolute zero, or 0 degrees Kelvin is defined as zero particle movement, because it has zero energy.
Hope this helps
<span>In the </span>natural logarithm<span> format or in equivalent notation (see: </span>logarithm) as:
base<span> e</span><span> assumed, is called the </span>Planck entropy<span>, </span>Boltzmann entropy<span>, Boltzmann entropy formula, or </span>Boltzmann-Planck entropy formula<span>, a </span>statistical mechanics<span>, </span><span> </span>S<span> is the </span>entropy<span> of an </span>ideal gas system<span>, </span>k<span> is the </span>Boltzmann constant<span> (ideal </span>gas constant R<span> divided by </span>Avogadro's number N<span>), and </span>W<span>, from the German Wahrscheinlichkeit (var-SHINE-leash-kite), meaning probability, often referred to as </span>multiplicity<span> (in English), is the number of “</span>states<span>” (often modeled as quantum states), or "complexions", the </span>particles<span> or </span>entities<span> of the system can be found in according to the various </span>energies<span> with which they may each be assigned; wherein the particles of the system are assumed to have uncorrelated velocities and thus abide by the </span>Boltzmann chaos assumption<span>.
I hope this helps. </span>