Answer:
Explanation:
Let T be the tension .
Applying newton's second law on the downward movement of the bucket
mg - T = ma
On the drum , a torque of TR will be acting which will create an angular acceleration of α in it . If I be the moment of inertia of the drum
TR = Iα
TR = Ia/ R
T = Ia/ R²
Replacing this value of T in the other equation
mg - T = ma
mg - Ia/ R² = ma
mg = Ia/ R² +ma
a ( I/ R² +m)= mg
a = mg / ( I/ R² +m)
mg - T = ma
mg - ma = T
mg - m x mg / ( I/ R² +m) = T
mg - m²g / ( I/ R² +m ) = T
mg - mg / ( 1 + I / m R² ) = T
b ) T = Ia/ R²
I = TR² / a
c ) Moment of inertia of hollow cylinder
I = 1/2 M ( R² - R² / 4 )
= 3/4 x 1/2 MR²
= 3/8 MR²
I / R² = 3/8 M
a = mg / ( I/ R² +m)
a = mg / ( 3/8 M + m )
T = Ia/ R²
= 3/8 MR² x mg / ( 3/8 M + m ) x 1 /R²
=
Answer:
N = 23.4 N
Explanation:
After reading that long sentence, let's solve the question
The contact force is the so-called normal in this case we can find it by writing the translational equilibrium equation for the y axis
N - w₁ -w₂ =
N = m₁ g + m₂ g
N = g (m₁ + m₂)
let's calculate
N = 9.8 (0.760 + 1.630)
N = 23.4 N
This is the force of the support of the two blocks on the surface.
'Universe' means 'Everything'. That is, all matter, all space, all time.
Answer:
V = 0.0806 m/s
Explanation:
given data
mass quarterback = 80 kg
mass football = 0.43 kg
velocity = 15 m/s
solution
we consider here momentum conservation is in horizontal direction.
so that here no initial momentum of the quarterback
so that final momentum of the system will be 0
so we can say
M(quarterback) × V = m(football) × v (football) ........................1
put here value we get
80 × V = 0.43 × 15
V = 0.0806 m/s
Answer:
acceleration of the car is 3 m\s^2
Explanation:
from rest means the initial velocity (vi) is zero
time = 5s
final velocity (vf) = 15m\s
a = vf - vi \ t
a = (15-0) \ 5
a= 3 m\s^2
which means that the car is speeding up 3 meters every second