B ia the correct one .
Hydrogen only uses the first energy shell, which holds 2 electrons, not 8.
Answer: B= Rusting ability
Explanation:
Physical property is defined as the property which can be measured and whose value describes the state of physical system. For Example: State, density etc.
Chemical property is defined as the property of a substance which is observed during a reaction where the chemical composition identity of the substance gets changed.
1. Boiling point: is a physical property as there is a change of state.
2. Rusting ability: is a chemical property as there is formation of new substances.
3. Melting point: is a physical property as there is a change of state.
4. Density: is a physical property as there is no formation of new substances.
A quantity of property that must be transferred to body to the physical system to perform work
Answer:
28.93 g/mol
Explanation:
This is an extension of Graham's Law of Effusion where
We're only talking about molar mass and time (t) here so we'll just concentrate on . Notice how the molar mass and time are on the same position, recall effusion is when gas escapes from a container through a small hole. The time it takes it to leave depends on the molar mass. If the gas is heavy, like Xe, it would take a longer time (4.83 minutes). If it was light it would leave in less time, that gives us somewhat an idea what our element could be, we know that it's atleast an element before Xenon.
Let's plug everything in and solve for M2. I chose M2 to be the unknown here because it's easier to have it basically as a whole number already.
The square root is easier to deal with if you take it out in the first step, so let's remove it by squaring each side by 2, the opposite of square root essentially.
M2= 0.22 x 131
M2= 28.93 g/mol
Answer:
10425 J are required
Explanation:
assuming that the water is entirely at liquid state at the beginning , the amount required is
Q= m*c*(T final - T initial)
where
m= mass of water = 25 g
T final = final temperature of water = 100°C
T initial= initial temperature of water = 0°C
c= specific heat capacities of water = 1 cal /g°C= 4.186 J/g°C ( we assume that is constant during the entire temperature range)
Q= heat required
therefore
Q= m*c*(T final - T initial)= 25 g * 4.186 J/g°C * (100°C- 0°C) = 10425 J
thus 10425 J are required